The Computer Search for the Optimal Settings of a Multi-factorial Experiment Using Response Surfaces D-optimality Design Criterion
Chapter One
OBJECTIVESย OFย THEย STUDYย
The main aim and objectives of this dissertation are
(i) to explore and exploitย MATLAB 5.3 to derive D-optimal designs for a multi-factorial experiment under each ofย three alternative second order response surface models,
(ii) to establish D-efficiency and rotatability-efficiency of the optimal designs under each of the three response surface models, and
(iii) to determine the optimum Nitrogen, Phosphorus, Potassium and Sulphur (NPKS) fertilizer applications for grain production of maize, sorghum and millet in Savannah zone of Nigeria.]
CHAPTERย TWO
ย LITERATUREย REVIEW
ย INTRODUCTION
Thisย chapter considersย theย historyย andย developmentsย inย RSM, whereย severalย literaturesย inย theย area ofย RSM wereย reviewed.
THEย EMERGENCEย ANDย DEVELOPMENTย OFย RESPONSEย SURFACEย METHODS
The genesis of response surface methodology (RSM) can be traced back to theย works of J. Wishart, C.P. Winsor, E.A. Mitscherlich, F. Yates, and others in the earlyย 1930s or even earlier. However it was not until 1951 that RSM was formally developedย by G.E.P. Box and K.B. Wilson and other colleagues at Imperial Chemical Industries inย England, (Box and Wilson, 1951). Their objective was to explore relationships such asย those between the yield of a chemical process and a set of input variables presumed toย influence the yield. Since the pioneering work of Box and his co-workers, RSM has beenย successfullyย usedย and appliedย inย many diverseย fieldsย such as chemical engineering,ย industrial development and process improvement, agricultural and biological research,ย evenย computerย simulation,ย toย mentionย justย aย few.
The applications of RSM can be found in Edmondson (1991), Smith et al. (1997),ย Mountzouris et al. (1999a, 1999b, 2001), Regalado et al. (1994), Rosenthal et al. (2001),ย Kikafunda et al. 1998, Jauregi et al. (1997),ย Trinca and Gilmour (1998, 1999, 2000a,ย 2000b, 2001), Gilmour and Ringrose (1999), Gilmour and Trinca (2003), Gilmour andย Meadย (2003).
However, there are several procedures that are used in the realization of RSMย objectives, especially in the area of criteria for choosing a design. These ranges from theย least squares based procedures, the integrated mean square error (IMSE) criterion, theย theoryย ofย designย optimalityย andย theย designย robustness.ย Inย ourย workย weย focussedย mainlyย onย the theoryย ofย designย optimalityย andย inย particularย theย D-optimalityย criterion.
Optimal design theory was developed mainly after World War II. Kiefer (1958,ย 1959, 1960, 1961, 1962a, 1962b) is attributed to having provided the basic mathematicalย groundworkย forย optimalย designย theory.ย Presentlyย thereย areย twoย schoolsย ofย thoughtย regarding the application of the principles of optimal design theory to the derivation ofย response surface designs: the โKiefer schoolโ and the โBox school.โ In the latter school,ย bias suspected of being present in the fitted model plays a significant role. In the Kieferย school,ย however,ย biasย isย regardedย asย insignificantย orย itย doesย notย exist.ย Theย mainย preoccupationย inย thisย schoolย is,ย therefore,ย withย designsย thatย minimizeย theย varianceย associatedย withย theย fittedย model,ย ลท(x).
The aim of the optimality theory is selecting an optimum experimental design which, in most cases, needs to be multifaceted. Therefore the problem of selecting a suitable design is thus a formidable one (Box and Draper, 1987). The optimum designs are usually constructed using computer algorithm and are therefore referred to as computer-aided designs. One form of the computer-aided designs is the D-optimal designs. It possesses the most important design criterion in applications (Atkinson and Donev, 1992). These types of computer-aided designs are particularly useful when classical designs do not apply. Unlike standard classical designs such as factorials and fractional factorials, D-optimal design matrices are usually not orthogonal and effect estimates are correlated. The D-optimal designs are always an option regardless of theย type of model the experimenter wishes to fit (for example, first order, first order plusย some interactions, full quadratic, cubic, etc.) or the objective specified for the experimentย (for example, screening designs, response surfaces, etc.).ย The optimality criterion used inย generatingย D-optimalย designsย isย oneย ofย maximizingย |X’X|,ย theย determinantย ofย theย informationย matrixย X’X.
Several researches related to D-optimum designs have been undertaken. Mitchellย (1974a, 1974b) in his two papers gave algorithms for the construction of โD-optimalโย experimental designs, Mitchell and Bayne (1978) discussed the D-optimal fractions ofย three-level factorial designs, Galil and Kiefer (1980) in their paper considered time-andย space-saving computer methods, related to Mitchellโs DETMAX, for finding D-optimalย designs.
CHAPTERย THREE
ย RSMย OPTIMIZATIONย PROCEDUREย (PATHย OFย STEEPESTย ASCENT)
INTRODUCTION
In this chapter we considered one of the RSM optimizations procedures i.e. theย Path of Steepest Ascent (PSA). The determination of optimal settings of the experimentalย factors thatย produce theย maximum (orย minimum)ย valueย of theย responseย inย RSMย isย achievedย usingย theย pathย ofย steepestย ascentย as follows.
RSMย Experimentalย Optimisationย Procedureย (PSA
- Planandย runย aย factorial (orย fractionalย factorial)ย designย near/atย aย startingย ย (x10ย , x20ย ,โฆ.)
- Fitaย linearย modelย (excludingย interactionย orย quadraticย terms)ย toย the
- Determinepathย ofย steepestย ascentย (PSA)ย โย aย quickย wayย toย moveย toย theย optimumย thatย isย gradient
- Runtestsย onย PSAย untilย responseย noย longer
- Ifcurvatureย ofย surfaceย (likeย quadraticย orย cubicย surfaces)ย isย largeย goย toย stepย (vi),ย elseย goย toย stepย (i).
- Neighbourhoodofย optimumย โย design,ย run,ย andย fitย (usingย leastย squares)ย aย secondย order
- Basedonย secondย orderย modelย โย pickย optimalย settingsย ofย independent
CHAPTERย FOURย
COMPUTER-AIDEDย DESIGNSย METHODOLOGY
ย INTRODUCTON
In this chapter we present the concept of design regions and the conditionsย necessitatingย theย useย ofย computer-aidedย designs.ย Theย detailsย concerningย D-optimalย designs,ย startingย fromย itsย leastย squares,ย propertiesย andย sequentialย algorithmsย wereย allย discussed.ย Theย modelsย toย be employed andย theย measure ofย rotatabilityย wereย stated.
ย DESIGNย REGIONS
The common structure to all experiments is the allocation of treatments, or factorย combinationsย toย experimental units.ย Thus,ย aย desirableย designย of experimentsย shouldย provide a distribution of points throughout the region of interest, that is, to provide asย muchย informationย asย possibleย onย theย problem.ย Theย unitย (orย regionย ofย interest),ย forย example, might be a plot of land receiving a unique treatment combination. As is theย tradition in RSM, it is convenient for most applications to scale the quantitative factorsย (variables) which vary between a minimum and a maximum value (xi,minโคย xiย โค xi,max; i =ย 1,2,โฆ,k).
CHAPTERย FIVEย
MATLABย SOFTWARE
ย INTRODUCTON
Inย thisย chapterย weย consideredย theย MATLABย softwareย whichย wasย usedย inย implementingย ourย algorithmย forย the determinationย ofย D-optimalย designs.
MATLAB is an acronym for Matrix Laboratory; a powerful fourth generationย programming language. It is a high performance language for technical computing itย integrates computation, visualization, and programming in an easy-to-use environmentย where problems and solutions are expressed in familiar mathematical notation. Typicalย usesย include:
- Math and computation
- Algorithm development
- Modelling, simulation, and prototyping
- Data analysis, exploration, and visualization
- Scientific and engineering graphics
- Applicationdevelopment,ย includingย graphicalย user interface
MATLAB is an interactive system and a programming language whose basic dataย element is an array that does not require dimensioning. This allows solving of manyย technical computing problems especially those with matrix and vector formulations in aย fraction of time it would take to write a program in a scalar non-interactive language suchย asย Cย orย FORTRAN.
CHAPTERย SIXย
CONSTRUCTIONย OFย D-OPTIMUMย DESIGNS
ย INTRODUCTON
In this chapter we implemented the programs given in chapter five with the aim ofย generatingย theย D-optimumย designs.
Observe that our experiment has 5 levels of nitrogen (N), 5 levels of phosphorusย (P), 3ย levels of sulphurย (S),ย andย 2ย levels of potassium (K)ย givingย 5ร5ร3ร2ย =ย 150ย treatmentย combinations. Aย maximumย ofย theย bestย 21ย treatmentย combinationsย isย required.
The first levels of all the factors are zero levels which are regarded as controls.ย Without the controls the treatment combinations would be 4ร4ร2ร1= 32.ย We shall beย generatingย ourย designs basedย onย withย andย withoutย controls.
The construction of a D-optimum design for the experiment would be for runs orย support points or treatment combinations based on property (6) of the D-optimal designs,ย which states that, n the number of support point should beย p โค n โค p(p+1)/2, where p isย the number of parameter estimates. The procedureย for searchingย for the designs (asย describedย inย chapterย five),ย usingย ourย programย inย MATLABย isย asย follows.
CHAPTERย SEVEN
SUMMARY,ย CONCLUSIONย ANDย RECOMMENDATION
ย ย INTRODUCTON
In this chapter we present the summary, conclusion and recommendations basedย onย theย results obtainedย inย chapterย six.
SUMMARY AND CONCLUSION
We recall that the main objective of our thesis is to generate with the aid ofย computer algorithms an optimal settings for a four factor experiment involving nitrogen,ย phosphorus, sulphur and potassium at 5,5,3 and 2 levels respectively if controls are used,ย and 4,4,2 and 1 respectively, if there is no control. The factors are to be tested on maize,ย sorghum and millet. It should also be noted that in the initial experiment 21 treatmentย combinations are required because of limitation of resources. In chapter six, we startedย first by generating the treatment combinations for both with and without controls usingย the algorithms given in chapter five. We used the exchange algorithm also given inย chapter five to search for D-optimal settings (designs) for maize, sorghum and milletย usingย theย interactions,ย quadraticย andย pure-quadraticย models.ย Sinceย itย isnโtย possibleย plotting the optimal settings for with control, the optimal settings generated for withoutย control were then plotted on a three-dimensional space to depict the distributions of theย settings,ย as shownย inย fig.ย 6.3ย throughย 6.8.
The three models interaction, quadratic and pure-quadratic models are comparedย for the crops. Theย maize was considered separately whileย sorghum and milletย wereย consideredย jointlyย because theyย have the sameย initialย andย optimalย settings.
We favoured the use of quadratic model and evaluated the rotatability of theย optimal settings (design) of the model using Khuriโs measure of rotatability. It was foundย thatย theย designย was nearย rotatableย withย a valueย ofย 83.55%.
ย RECOMMENDATIONS
Basedย onย ourย observationsย inย 6.6,ย weย recommend theย useย ofย theย settingsย generated
by the quadraticย model for theย initial experiments instead of the ones used. This isย because for these type of levels (more than two), the quadratic explains the relationshipsย among factor levels better than the general linear model used for the analysis of theย experimentย (whichย onlyย explainsย relationshipย ofย levelsย forย atย mostย two).
The settings used in the initial experiment, where nitrogen, phosphorus, sulphur,ย andย potassiumย areย representedย byย X1,ย X2,ย X3,ย andย X4ย respectivelyย are:
Areasย ofย Futureย Research
This work explores rowexchange algorithms of MATLAB 5.3 to give a procedure for analysing a multi-factor experiment whose design region was of the non-standard type (or restricted). For future research there is the need to consider factors that have three or more levels. Also, the procedure used in generating the treatment combinations for the restricted design region in MATLAB 5.3 is very tedious; there is also the need to devise a simple procedure for this purpose. However, despite the fact that the D-optimal design is established in literature to be the best in applications, there is still the need to compare the performances of the D-optimal designs presented here with the other alphabetic criteria (like A, E, G, V, etc.). One other important area which needs to be explored is the possibility of using the D-optimal designs generated in blocks. This will definitely assist in situations where the factors are qualitative in nature. It will also be of tremendousย importance if the D-optimal design criterion can be used to determine optimal settings forย aย multiresponseย experiment.
REFERENCES
- Atkinson,ย A.C.ย andย Donev,ย A.N.ย (1992).ย Optimumย Experimentalย Designs.ย Newย York:ย Oxford.
- Bamanga, M.A. andย Asiribo, O.E.ย (2005). โThe Use of Response Surface Methodologyย inย theย Determinationย ofย Optimumย Conditions,โย Zumaย Journalย ofย Pureย andย Appliedย Sciencesย 7(2),ย pp.174-181.
- Box, G.E.P. and Draper, N.R. (1987).ย Empirical model building and response surfaces,ย Newย York:ย Wiley.
- Box,ย G.E.P.,ย Hunter,ย W.G.,ย andย Hunter,ย J.S.ย (1978).ย Statistics forย experimenters.ย Newย York:ย Wiley.
- Box, G.E.P. and Behnken, D.W. (1960).ย โSome New Three Level Designs for the Studyย ofย Quantitativeย Variables,โ Technometrics,ย 2,ย pp.455-475.
- Box,ย G.E.P. andย Draper,ย N.R.ย (1975).ย โRobustย Designs,โย Biometrika, 62,ย pp.347-352.
- Box, G.E.P. and Hunter, J.S. (1957).ย โMultifactor Experimental Designs for Exploringย Response Surfaces,โย Ann.ย Math.ย Statist., 28,ย pp.195-241.
- Box, G.E.P. and Wilson, K.B. (1951).ย โOn the Experimental Attainment of Optimumย Conditionsย (withย discussion),โ J.ย Roy.ย Statist.ย Soc.,ย B13,ย pp.1-45.
- Chigbu,ย P.E.ย (1998).ย โEfficiency,ย Efficiencyย factorsย andย Optimalityย Criteriaย forย Comparingย Incomplete-Block Designs,โย Journalย ofย Nig.ย Stat.ย Assoc.,ย 12,ย pp.39-55.