Mathematics Project Topics

Study of Fuzzy Multisets and Their Algebra

Study of Fuzzy Multisets and Their Algebra

Study of Fuzzy Multisets and Their Algebra

Chapter One

ย Aim andย Objectives

Theย aimย ofย thisย Dissertationย isย toย studyย Fuzzyย Sets,ย Multisets,ย Fuzzyย Multisetsย and develop some algebraicย structures.

The objectives are as follows:

To comprehensively study the origin, structure and development of fuzzy set theory.

To critically study the fundamentals of fuzzy sets, multisets, and fuzzy multi- sets.

To extend the properties of ฮฑ– cuts for fuzzy sets to fuzzy multisets.

To strengthen properties of inverse ฮฑ-cuts for fuzzy sets and extend them to fuzzyย multisets.

To formulate certain monoids of multiset partitions and that of fuzzy partitions.

To study fuzzy groups, multigroups, and fuzzy multigroups for further extensions.

CHAPTER TWO

LITERATURE REVIEW

Theย queernessย ofย theย conceptย ofย vaguenessย hasย longย beenย drawingย theย attentionย of philosophers,linguists, logicians, and mathematicians. As noted in (Magnus, 1997), Nietscheย wasย theย firstย toย recognizeย theย notionย ofย vagueness.ย Inย courseย ofย time,ย various other closely related notions such as loose concepts, haziness, borderline cases, flu- entย boundaries,ย caseย byย grades, etc.,ย appeared.ย Asย mentionedย earlier,ย Gottlobย Frege (1848โ€“1925)ย wasย theย firstย toย provideย aย mathematicalย definitionย ofย vaguenessย inย terms of having an unsharp boundary. A seminal contribution towards investigating the concept of vaguenessย was made by (Black, 1937). The epicentre of Blackโ€™s explica- tionย canย beย seenย asย aย unifyingย threadย betweenย Bertrandย Russellโ€™sย andย C.ย S.ย Peirceโ€™s approach.

Mengerย (1979)ย arguedย thatย theย notionย ofย probabilityย couldย adequatelyย dealย withย loose concepts. He also introduced the notion of hazy set. However, it was not explicit until the formulation of the theory of fuzzy sets (Zadeh, 1965) that the notion of probabilityย couldย notย dealย withย vaguenessย andย otherย looseย conceptsย ifย theย meaning ofย theseย conceptsย isย theย absenceย ofย sharpย boundaries.ย Theย conceptย ofย fuzzinessย essen- tiallyย refersย toย theย semanticย featureย ofย theย vaguenessย ofย aย phenomenonย ratherย than itsย stochasticย explicationย whichย isย devoidย ofย it.

A distinctive feature of the concept of fuzziness can be seen summarized in the following: In contrast to the stochastic uncertainty-type vagueness, the vagueness concerning the description of the semantic meaning of events, phenomena or state- ments is called fuzziness [(Moreno-Armella and Waldegg, 1993). Kaushal et al. (2010)ย andย Seisingย (2005)ย providedย aย goodย dealย ofย illustrationsย toย describeย theย rele- vancy of fuzzy concept inย mathematics.]

In view of the pervasive role played by set-theoretic foundation, it was seemingly natural to look for a set theory-like framework to model the class of problems in which the source of vagueness is not the presence of random variables rather the absenceย ofย preciselyย definedย criteriaย ofย classย membership.ย Fortunately,ย itย wasย found

forthcoming by way of relaxing the restriction of definiteness imposed onย objects

to form a Cantorian set. L. A. Zadeh was the first who formulated a set-theoretic model inย (Zadeh,ย 1965)ย andย titledย itย fuzzyย setย theoryย inย contrastย toย crispย setย theory. Fuzzyย setย theoryย isย aย mathematicalย theoryย toย modelย vaguenessย andย otherย looseย con- cepts. It deals with fuzzy variables and fuzzyย relations.

 

CHAPTER THREE

FUNDAMENTALS OF FUZZY SETS, MULTISETS AND FUZZY MULTISETS

In this chapter, we explicate basic notions of fuzzy sets, multisets and fuzzy mul- tisets. In particular, we identify some fundamental notions of the aforesaid non- classical set theories which could be further clarified andย extended.

Definition and Representations of Fuzzyย Sets

ย ย Definition of a fuzzyย set

Definitionย 3.1.1ย Aย fuzzyย set(class)ย Aหœย inย Xย isย characterizedย byย aย membershipย func- tionย ยตAย whichย associatesย withย eachย pointย xย inย X,ย aย realย numberย ยตAหœย ย xย ย ย inย theย interval [0,ย 1].ย Theย valueย ofย ยตAหœ(x)ย representsย theย gradeย ofย membershipย ofย xย inย Aหœ.

Intuitively,ย ย itย ย canย ย beย ย saidย ย that,theย ย closerย ย theย ย valueย ย ofย ย ยตAหœ(x) toย ย unity,ย ย theย ย higher valued)ย ย characteristicย ย functionย ย ofย ย anย ย ordinaryย ย set,ย ย ย muAหœย ย canย ย beย ย calledย ย generalized

characteristic function first introduced in (Whitney, 1933). In general, a fuzzy set in a universal set can be obtained by applying a fuzzy restrictionย to x. If the mem bershipย functionย ofย Aหœย isย limitedย toย takeย valuesย inย theย setย ย ย ย 0,ย 1ย ,ย it becomes a crisp setย and,ย inย thisย sense,ย theย conceptย ofย fuzzyย setsย isย aย generalizationย ofย ordinaryย sets.

Remark 3.1.1ย It is well-known that ordinary sets exist only as subsets of a given universalย setย Xย byย applyingย aย crispย restrictionย toย X.

CHAPTER FOUR

ฮฑ-CUTS, INVERSE ฮฑ-CUTS AND RELATED RESULTS

Theย notionsย ofย ฮฑ-cutsย andย strongย ฮฑ-cuts,ย apartย fromย theirย multitudinalย applications, canย beย viewedย asย aย bridgeย bothย betweenย fuzzyย setsย andย crispย sets,ย andย fuzzyย multisets andย crispย multisets.ย Inย particular,ย ฮฑ-cutsย willย beย usedย inย thisย directionย toย generalize some fundamental results of fuzzy set theory to fuzzy multisetย theory.

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

ย ย Summary

Besidesย chapterย one,ย aย comprehensiveย andย criticalย Literatureย surveyย wasย presented inย chapterย two.ย Inย Chapterย three,ย fundamentalsย ofย fuzzyย sets,ย multisets,ย fuzzyย mul- tisetsย wereย presentedย fromย aย specificย perspectiveย toย provideย meansย toย modelย aย large classย ofย real-lifeย problemsย whichย intrinsicallyย involveย vaguenessย andย uncertainty.ย In chapterย four,ย alpha-cuts,ย inverseย alpha-cutsย inย fuzzyย setsย andย fuzzyย multisetsย were presented,ย andย someย ofย theirย propertiesย wereย extendedย fromย fuzzyย setsย toย fuzzyย multi- sets,ย inย particularย theย twoย decompositionย theoremsย wereย extendedย toย fuzzyย multiset. Moreover, inverse ฮฑ-cuts were introduced in fuzzy multisets and their properties studied. Inย chapterย five,ย algebraย ofย multisetsย andย fuzzyย setsย wereย studiedย viz.,ย fuzzy groups,ย monoidsย ofย fuzzyย subsets,ย multigroupsย andย fuzzyย multigroups.ย Finally,ย cer- tainย monoidsย ofย multisetsย partitions,ย fuzzyย partitionsย wereย constructedย andย abelian fuzzy multigroupย introduced.

Conclusion

The following results are the main contributions of this dissertation

Extension of properties of ฮฑ-cuts for fuzzy sets to fuzzyย multisets

Formulation of decomposition theorems for fuzzymultisets

Let A โˆˆ FM (X) and โ€  be the standard fuzzy multiset union.

First Decomposition Theorem states that

A

ฮฑโˆˆ[0,1]

ฮฑ[A].

Second Decomposition Theorem states that

[Proofs on page 82 ]

A

ฮฑโˆˆ[0,1]

ฮฑ]A[.

Extension of Properties of inverse ฮฑ-cuts for fuzzy sets to fuzzy multisets

Proposition 4.2.1

Letย Aหœ,ย Bหœย โˆˆย Fย (X)ย andย ฮฑ,ย ฮฒย โˆˆย [0,ย 1].ย ย Theย followingย propertiesย hold: i.ย ย ฮฑAหœโˆ’1ย โІย ย ฮฑโˆ’ย Aหœโˆ’1

  1. ฮฑโ‰คย ฮฒย ย impliesย ฮฑAหœโˆ’1ย โІย ย ฮฒย Aหœโˆ’1ย ย andย ฮฑโˆ’ย Aหœโˆ’1ย โІย ฮฒโˆ’ย Aหœโˆ’1
  • ฮฑย Aหœ Bหœย ย โˆ’1 ฮฑAหœโˆ’1 ฮฑBหœโˆ’1,ย ย ฮฑย ย ย Aหœ Bหœย ย โˆ’1 ฮฑAหœโˆ’1 ฮฑBหœโˆ’1ย ,ย and

ฮฑAหœโˆ’1ย โˆฉฮฑย Bหœโˆ’1ย โІย ฮฑ(Aหœย โˆฉย Bหœ)โˆ’1

  1. iv.ฮฑโˆ’ย ย ย Aหœย ย ย Bหœย ย โˆ’1 ฮฑโˆ’ย Aหœโˆ’1 ฮฑโˆ’ย Bหœโˆ’1,ย ฮฑโˆ’ย ย ย Aหœย ย ย Bหœย ย โˆ’1 ฮฑโˆ’ย Aหœโˆ’1 ฮฑโˆ’ย Bหœโˆ’1ย ,ย andย ฮฑโˆ’ย Aหœโˆ’1ย ย ย ฮฑโˆ’

Bหœโˆ’1ย โІย ฮฑโˆ’ย (Aหœย โˆฉย Bหœ)โˆ’1

  1. v.ฮฑ((Aหœโˆ’1)โ€ฒ)ย =ย ย (1โˆ’ฮฑ)โˆ’ย (Aหœโˆ’1)โ€ฒ
  2. vi.1Aหœโˆ’1ย =ย X

Aหœย โІย Bหœย iffย ฮฑBหœโˆ’1ย โІย ย ฮฑAหœโˆ’1;ย Aหœย โІย Bหœย iffย ฮฑโˆ’ย Bหœโˆ’1ย โІย ย ฮฑโˆ’ย Aหœโˆ’1

Aหœย =ย Bหœย iffย ฮฑBหœโˆ’1ย =ย ฮฑAหœโˆ’1;ย Aหœย =ย Bหœย iffย ฮฑโˆ’ย Bหœโˆ’1ย =ย ย ฮฑโˆ’ย Aหœโˆ’1

[Proofs on pageย 84]

Proposition 4.2.2 Let A, B, C โˆˆ FM (X). The following properties hold for

ฮฑ, ฮฒ โˆˆ (0, 1]:

  1. ฮฑ[A]โˆ’1 โˆช ฮฑ[B]โˆ’1 = ฮฑ[B]โˆ’1 โˆช ฮฑ[A]โˆ’1 ; ฮฑ[A]โˆ’1 โˆฉ [ B]โˆ’1 = ฮฑ[B]โˆ’1 โˆฉ ฮฑ[A]โˆ’1
  2. ฮฑ ]A[โˆ’1 โˆช ฮฑ ]B[โˆ’1 = ฮฑ ]B[โˆ’1 โˆช ฮฑ ]A[โˆ’1 ; ฮฑ]A[โˆ’1 โˆฉ ฮฑ ]B[โˆ’1 = ฮฑ ]B[โˆ’1 โˆฉ ฮฑ ]A[โˆ’1

iii.ย ฮฑ[A]โˆ’1 โˆช (ฮฑ[B]โˆ’1 โˆช ฮฑ[ C]โˆ’1) = (ฮฑ[A]โˆ’1 โˆช ฮฑ[ B]โˆ’1) โˆช ฮฑ[C]โˆ’1;

ฮฑ[A]โˆ’1 โˆฉ (ฮฑ[B]โˆ’1 โˆฉ ฮฑ[ C]โˆ’1) = (ฮฑ[A]โˆ’1 โˆฉ ฮฑ[ B]โˆ’1) โˆฉ ฮฑ[C]โˆ’1

  1. ฮฑ ]A[โˆ’1 โˆช (ฮฑ ]B[โˆ’1 โˆช ฮฑ ]C[โˆ’1) = (ฮฑ ]A[โˆ’1 โˆช ฮฑ ]B[โˆ’1) โˆช ฮฑ ]C[โˆ’1 ;

ฮฑ ]A[โˆ’1 โˆฉ (ฮฑ ]B[โˆ’1 โˆฉ ฮฑ ]C[โˆ’1) = (ฮฑ ]A[โˆ’1 โˆฉ ฮฑ ]B[โˆ’1) โˆฉ ฮฑ ]C[โˆ’1

  1. ฮฑ [A]โˆ’1 โІ ฮฑ ]A[โˆ’1
  2. ฮฑ โ‰ค ฮฒ implies ฮฑ [A]โˆ’1 โІ ฮฒ [A]โˆ’1โ€˜ and ฮฑ ]A[โˆ’1 โІ ฮฒ ]A[โˆ’1

[proofs on pageย 88]

Formulation of Monoids of partitions of a multiset and that of S-H fuzzy partitions of aย set.

Monoids of partitions ofmultisets

Let A be a cardinality-bounded nonemptyย msetย and A be the collection ofย allย partitionsย ofย Aย . Then operations โˆ— and โŠ• were introduced such tha

  • (โˆ(A), โˆ—) or (โˆ(A, โˆ—, {A}) is a commutative idempotent monoid,and
  • A, is a commutative idempotent monoid. [Proofs on pageย 110]

Monoids of S-H fuzzy Partitions of aย set

Let Tหœ

beย ย aย ย S-Hย ย fuzzyย ย partitionย ย ofย ย aย ย setย ย Xย ย and,ย ย letย ย Aหœiย ย ย (iย =ย 1,ย n) denoteย ย the blocksย ย ofย ย theย ย partitionย ย Tหœ.ย ย ย Let X denoteย ย theย ย collectionย ย ofย ย allย ย S-Hย ย fuzzy partitionsย ofย X.ย Thenย operationsย โˆ—,ย โ—‹,ย andย โŠ•ย wereย introducedย suchย that

  • (โˆ(X), โˆ—) is a commutative idempotentmonoid,
  • (โˆ(X),โ—‹)ย isย aย commutativeย idempotentย monoid,ย and
  • X , is a commutative idempotent monoid. [Proofs on pageย 105]

Properties of Abelian Fuzzy Multigroupsย introduced

Propositionย 5.3.26ย Letย A FM ย Xย .ย Then x,ย y Xย theย followingย assertions areย equivalent:

  • CMA(xy) =CMA(yx),
  • CMA(xyxโˆ’1) =CMA(y),
  • CMA(xyxโˆ’1) ย โ‰ฅCMA(y),
  • CMA(xyxโˆ’1) ย โ‰คCMA(y),

Propositionย 5.3.27Letย A FM Xย .

Then the following assertions are equivalent:

  • CMA(xy)=ย CMA(yx),ย โˆ€x,ย yย โˆˆย X,
  • Aโ—‹ย Bย =ย Bย โ—‹ย A,ย โˆ€Bย โˆˆย FMย (X).

Proposition 5.3.28

Letย A AFMG ย X ย . Then Aโˆ—, and A ย ฮฑ, nย ,ย n N are normal subgroups of X.

[Proofs on pageย 116]

Recommendations

The construction provided in subsection 4.2.2 may be found useful inย addressing adequately some real life problems which require symmetry of abstraction. The concept of ฮฑ-cuts and inverse ฮฑ-cuts can be very useful in many areas like infor- mationย retrievalย onย theย web,ย dataย encription,ย dataย mining,ย codingย theory,ย decision making, etc. In view of the multitudinal application of ฮฑ-cuts and inverse ฮฑ-cuts, it needs to be investigated whether or not, similar to the result that every fuzzy multiset can be decomposed into its ฮฑ-cuts obtained in (Singh et al., 2014),ย holds for inverse ฮฑ-cuts asย well.

Inย viewย ofย theย significanceย ofย fuzzyย multisetย theoryย itย isย recommendedย thatย itย should beย inculcatedย intoย theย curriculaย ofย studies,ย bothย atย undergraduateย andย postgraduate levels.

List of Journal publications

  • Singh, D., Alkali, A., Ibrahim, A. M., (2013). An Outline of the Development of the Concept of Fuzzy Multisets, International Journal of Innovation, Management and Technology, Vol. 4, no.2,ย 309-315.
  • Singh, D., Alkali, , Isah, A. I., (2014). Some Applications of ฮฑ-Cuts in Fuzzy Multiset Theory, Journal of Emerging Trends in Computing and Information Sci- ences, Vol. 5, no. 4,328-335.
  • Singh, D., Alkali, , Singh, J. N., (2014). Monoids of Partitions of aMultiset, Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 1, 9-16.
  • Singh, D., Alkali, J., (2015). Monoids of S-H fuzzy Partitions of a set, In- ternational Journal of Pure and Applied Mathematics Vol. 98 No. 1,123-128.
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!