Mathematics Project Topics

Spectral Theory of Compact Linear Operators and Applications

Spectral Theory of Compact Linear Operators and Applications

Spectral Theory of Compact Linear Operators and Applications

Chapter One

PREAMBLE OF THE STUDY

Basicย notionsย andย resultsย fromย Functionalย Analysis

Theย purposeย ofย thisย sectionย isย toย refreshย ourย mindsย onย someย basicย fundamentalsย required to facilitate a smooth understanding of the study of compact linearย operatorsย andย itsย applications.

Definitionย 1.1.1.ย A non-negative function onย aย vectorย spaceย Xย isย calledย aย normย onย Xย ifย andย onlyย if

  1. ||x||โ‰ฅย 0 forย ย every xย โˆˆย X (Positivity).
  2. ||x||=ย 0 ifย ย and ย onlyย ย if xย =ย 0 (Nondegeneracy).
  3. ||ฮป(x)||=ย |ฮป|||x||ย ย forย ย every xย โˆˆย X (Homogeneity).
  4. ||x+ย y||ย โ‰คย ||x||ย +ย ||y|| forย ย every x,ย yย โˆˆย X (subadditivity).

Aย vectorย spaceย Xย withย aย norm isย denotedย byย (X, )ย andย isย calledย aย normedย linearย spaceย (orย justย aย normedย space).

Aย sequenceย (xn)nโˆˆNย ofย elementsย inย aย normedย linearย spaceย Xย isย calledย Cauchyย ifย โˆ€ฯตย >ย 0,ย โˆƒNย ย โˆˆย N,ย suchย thatย forย m,ย nย โˆˆย N,ย ||xmย โˆ’ย xn||ย โ‰คย ฯต,ย m,ย nย โ‰ฅย N

A Banach space is a normed linear space (X,ย ) that is complete in theย canonical metric defined by ฯ(x, y) =ย x ย y ย for x, y ย X i.e every Cauchyย sequenceย inย Xย forย theย metricย ฯย convergesย toย someย pointย inย X.

CHAPTER TWO

Linearย Compactย Operatorsย onย Banachย Spaces

Definitionย 2.0.9.

Letย Xย andย Yย beย arbitraryย Banachย Spaces.ย Aย linearย operator,ย Tย :ย Xย โˆ’โ†’ย Yย isย calledย compactย ifย theย imageย ofย theย closedย unitย ballย BX(0,ย 1)ย =ย {xย โˆˆย Xย ย :ย วxวXย ย โ‰คย 1} byย Tย isย aย relativelyย compactย subsetย ofย Yย .ย Inย otherย words,ย Tย isย compactย ifย Tย (BX)ย isย compact.

Thisย definitionย isย equivalentย toย eachย ofย theย followingย properties.

  1. Foreachย boundedย Bย โŠ‚ย X,ย theย imageย Tย (B)ย isย relativelyย compactย inย Yย .
  2. Foreveryย boundedย sequence xnย ย nโˆˆN X, Txnย nโˆˆNย hasย aย convergentย subsequenceย inย 

Weย introduceย theย followingย notations

K(X,ย Yย )ย :=ย {Tย :ย Xย โˆ’โ†’ย Y |ย Tย isย linearย andย compact}ย K(X)ย =ย K(X,ย X)

lemmaย 2.0.10.

K(X,ย Yย )ย โŠ‚ย B(X,ย Yย ).

Proof.ย Supposeย T ย โˆˆย K(X,ย Yย ),ย weย showย thatย T ย โˆˆย B(X,ย Yย )ย i.eย forย allย xย โˆˆย X

thereย existย Mย ย >ย 0ย suchย thatย ||Tย x||ย โ‰คย Mย ||x||

Letย xย โˆˆย X.ย ifย xย =ย 0,ย itย holdsย trivially.

Assumeย xย /=ย 0, ย xย ย ย โˆˆย BX

ย  ||x||

Tย (BX)ย isย compactย sinceย Tย โˆˆย K(X,ย Yย ),soย Tย (BX)ย isย bounded.

Thereforeย thereย existย Mย >ย 0ย suchย thatย Tย (ย x

||x||

)ย โ‰คย Mย , which implies tha

||Tย x||ย โ‰คย Mย ||x||

Remark.ย Recall thatย Riesz theoremย characterizesย the compactness of the closedย unitย ballย ofย aย Banachย spaceย Xย byย theย finitenessย ofย theย dimensionย ofย X.

Thus for an infinite dimensional Banach space X, we have I ย โˆˆ B(X) \ K(X)ย andย soย theย inclusionย K(X)ย โŠ‚ย B(X)ย isย strict,ย thatย is,

K(X) ย ร‡ ย B(X) wheneverย dimXย =ย +โˆž.

ย Propertiesย ofย compactย linearย maps

Theoremย 2.1.1.

Letย X,ย Yย andย Zย beย Banachย spaces,ย andย letย Tย :ย Xย โˆ’โ†’ย Yย ,ย Sย :ย Yย โˆ’โ†’ย Zย and

Fย :ย Zย โˆ’โ†’ย Xย beย boundedย linearย operators.

  1. Iftheย R(Tย )ย isย finiteย dimensionalย (i.eย dimR(Tย )ย <ย +โˆž),ย thenย Tย isย 
  2. IfTย isย compact,ย thenย Tย โ—ฆย Sย andย Fย โ—ฆย Tย areย 
  • For every T1,T2ย โˆˆ K(X, Y ) and every scalar ฮฑ and ฮฒ, we have ฮฑT1+ฮฒT2ย โˆˆย K(X,ย Yย ).ย Thatย isย K(X,ย Yย )ย isย aย linearย subspaceย ofย B(X,ย Yย ).

Proof.

  1. Supposethatย R(Tย )ย isย finiteย dimensionalย andย letย Bย beย anyย boundedย subsetย ofย X. ย Weย showย thatย Tย (B)ย isย compactย inย Y . ย 

T (B)ย isย aย boundedย subsetย ofย Y ,ย sinceย Tย isย bounded.ย Soย T (B)ย isย compactย asย aย closedย andย boundedย subsetย ofย aย finiteย dimensionalย space.ย Henceย Tย isย compact.

Let ย Bย be ย any ย boundedย set ย in ย X. ย We ย need ย toย show ย thatย Tย (S(B)) ย and

Fย (Tย (B))ย areย compact.

S(B)ย isย boundedย sinceย Sย isย bounded.ย Thereforeย Tย (S(B))ย isย compactย sinceย T

isย compact.ย Thisย showsย thatย Tย โ—ฆย Sย isย compact. ย 

Nowย (Fย โ—ฆย Tย )(B)ย =ย Fย (Tย (B))ย โŠ‚ย Fย (Tย (B)),ย sinceย Tย (B)ย โŠ‚ย Tย (B).

(Fย โ—ฆย Tย )(B)ย โŠ‚ย Fย (Tย (B))

And since Tย is compact, T (B) is compact, and so Fย (T (B)) is compact as aย continuous image of compact set. Thereforeย F (T (B)) โŠ‚ F (T (B)) ย is compactย asย aย closedย subsetย ofย aย compactย set.ย Thusย Fย โ—ฆย Tย isย compact.

  • ClearlyฮฑT1ย + ฮฒT2ย โˆˆ B(X, Y ).ย Let ย BXย ย be ย the ย closedย unit ย ball ย of ย X,ย weย showย thatย (ฮฑT1ย +ย ฮฒT2)(BX)ย isย compactย inย Yย .

(ฮฑT1ย +ย ฮฒT2)(BX) ย ย โІย ฮฑT1(BX)ย +ย ฮฒT2(BX) byย linearityย ofย T1ย andย T2.

Thusย (ฮฑT1ย +ย ฮฒT2)(BX)ย โŠ‚ย ฮฑT1(BX)ย +ย ฮฒT2(BX)ย since ฮฑT1(BX)ย andย ฮฒT2(BX)ย areย subsetsย ofย ฮฑT1(BX)ย andย ฮฒT2(BX)ย respectively. ฮฑT1(BX)ย +ย ฮฒT2(BX)ย is

 

CHAPTER THREE

Applicationย toย Linearย Ellipticย Boundaryย valueย Problems

Notationsย andย definitions

Allย funtionsย andย Vectorย fieldsย usedย areย ofย classย atleastย C2

Definitionย 3.1.1.ย Weย defineย theย gradientย ofย theย scalarย functionย fย โˆˆย Rnย asย theย vectorย fieldย ofย theย partialย derivativesย ofย fย denotedย byย โˆ‡fย i.e

Definitionย 3.1.2.ย Theย divergenceย ofย theย vectorย fieldย Fย =ย (f1,ย f2,ย …,ย fn)ย inย theย coordinatesย (x1,ย x2,ย …,ย xn),ย isย givenย by

โˆ‚f

divFย =ย โˆ‡ย ยทย Fย =

+ย โˆ‚f2ย +ย ย +ย โˆ‚fnย .

Definition ย 3.1.3. ย Let ย ฯ† Ck(โ„ฆ),ย k 2,ย whereย โ„ฆย isย openย inย Rn.ย Weย defineย theย Laplacianย operatorย ofย ฯ†ย by

ฮ”ฯ†ย =ย div(โˆ‡ฯ†)

Propositionย 3.1.4.ย Byย takingย ฯ†,ย ฯˆย โˆˆย Ck(โ„ฆ),ย kย โ‰ฅย 2,ย weย get,

  1. ฮ”(ฯ†+ย ฯˆ)ย =ย ฮ”ฯ†ย +ย ฮ”ฯˆ
  2. div(ฯ†โˆ‡ฯˆ)=ย ฯ†(ฮ”ฯˆ)ย +ย โŸจโˆ‡ฯ†,ย โˆ‡ฯˆโŸฉ

Bibliography

  • Gohberg an S. Seymour;ย Basicย Operatorย theory,ย 1980
  • EChidume;ย Applicableย Functionalย Analysis,ย Internationalย Centreย forย Theoreticalย Physicsย Trieste,ย Italy,ย Julyย 2006
  • Fabian,ย P.ย Habala,ย P.ย Hajek,ย V.ย Montesinosย andย V.ย Zizler; ย Banachย spaceย theoryย forย linearย andย non-linearย Analysis.ย ,ย Springerย 2006
  • AMunoz,ย Y.ย Sarantopolous,ย A.ย Tonge;ย Complexificationย ofย realย Banachย Spaces,ย Studiaย Mathematicaย 1999.
  • Djitte; Lectureย noteย onย Sobolevย spacesย andย linearย ellipticย partialย differ-ย entialย equations, African University of Science and Technology, Abuja,Nigeria. 2011
  • Albert; Lectureย noteย onย Functionalย Analysis,ย 2011
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!