Mathematics Project Topics

Spectral Theory of Compact Linear Operators and Applications

Spectral Theory of Compact Linear Operators and Applications

Spectral Theory of Compact Linear Operators and Applications

Chapter One

PREAMBLE OF THE STUDY

Basic notions and results from Functional Analysis

The purpose of this section is to refresh our minds on some basic fundamentals required to facilitate a smooth understanding of the study of compact linear operators and its applications.

Definition 1.1.1. A non-negative function on a vector space X is called a norm on X if and only if

  1. ||x||≥ 0 for  every x ∈ X (Positivity).
  2. ||x||= 0 if  and  only  if x = 0 (Nondegeneracy).
  3. ||λ(x)||= |λ|||x||  for  every x ∈ X (Homogeneity).
  4. ||xy|| ≤ ||x|| + ||y|| for  every x, y ∈ X (subadditivity).

A vector space X with a norm is denoted by (X, ) and is called a normed linear space (or just a normed space).

A sequence (xn)nN of elements in a normed linear space X is called Cauchy if ∀ϵ > 0, N  ∈ N, such that for m, n ∈ N, ||xm − xn|| ≤ ϵm, n ≥ N

A Banach space is a normed linear space (X, ) that is complete in the canonical metric defined by ρ(x, y) = x  y  for x, y  X i.e every Cauchy sequence in X for the metric ρ converges to some point in X.

CHAPTER TWO

Linear Compact Operators on Banach Spaces

Definition 2.0.9.

Let X and Y be arbitrary Banach Spaces. A linear operator, T X −→ Y is called compact if the image of the closed unit ball BX(0, 1) = {x ∈ X  : ǁxǁX   1} by T is a relatively compact subset of Y . In other words, T is compact if T (BXis compact.

This definition is equivalent to each of the following properties.

  1. Foreach bounded B ⊂ X, the image T (Bis relatively compact in Y .
  2. Forevery bounded sequence xn  n∈N X, Txn n∈N has a convergent subsequence in 

We introduce the following notations

K(X, Y ) := {T X −→ YT is linear and compact} K(X) = K(X, X)

lemma 2.0.10.

K(X, Y ) ⊂ B(X, Y ).

Proof. Suppose T  ∈ K(X, Y ), we show that T  ∈ B(X, Y ) i.e for all x ∈ X

there exist M  > 0 such that ||T x|| ≤ M ||x||

Let x ∈ X. if x = 0, it holds trivially.

Assume x /= 0,  x   ∈ BX

  ||x||

T (BX) is compact since T ∈ K(X, Y ),so T (BX) is bounded.

Therefore there exist M > 0 such that T ( x

||x||

) ≤ M , which implies tha

||T x|| ≤ M ||x||

Remark. Recall that Riesz theorem characterizes the compactness of the closed unit ball of a Banach space X by the finiteness of the dimension of X.

Thus for an infinite dimensional Banach space X, we have I  ∈ B(X) \ K(X) and so the inclusion K(X) ⊂ B(X) is strict, that is,

K(X)  Ç  B(X) whenever dimX = +∞.

 Properties of compact linear maps

Theorem 2.1.1.

Let X, Y and Z be Banach spaces, and let T X −→ Y , S Y −→ Z and

F Z −→ X be bounded linear operators.

  1. Ifthe R(T is finite dimensional (i.e dimR(T < +∞), then T is 
  2. IfT is compact, then T ◦ S and F ◦ T are 
  • For every T1,T2 ∈ K(X, Y ) and every scalar α and β, we have αT1+βT2 ∈ K(X, Y ). That is K(X, Y is a linear subspace of B(X, Y ).

Proof.

  1. Supposethat R(T ) is finite dimensional and let B be any bounded subset of X.  We show that T (B) is compact in Y .  

T (B) is a bounded subset of Y , since T is bounded. So T (B) is compact as a closed and bounded subset of a finite dimensional space. Hence T is compact.

Let  B be  any  bounded set  in  X.  We  need  to show  that T (S(B))  and

F (T (B)) are compact.

S(B) is bounded since S is bounded. Therefore T (S(B)) is compact since T

is compact. This shows that T ◦ S is compact.  

Now (F ◦ T )(B) = F (T (B)) ⊂ F (T (B)), since T (B) ⊂ T (B).

(F ◦ T )(B) ⊂ F (T (B))

And since T is compact, T (B) is compact, and so F (T (B)) is compact as a continuous image of compact set. Therefore F (T (B)) ⊂ F (T (B))  is compact as a closed subset of a compact set. Thus F ◦ T is compact.

  • ClearlyαT1 + βT2 ∈ B(X, Y ). Let  BX  be  the  closed unit  ball  of  X, we show that (αT1 + βT2)(BX) is compact in Y .

(αT1 + βT2)(BX)   ⊆ αT1(BX) + βT2(BX) by linearity of T1 and T2.

Thus (αT1 + βT2)(BX) ⊂ αT1(BX) + βT2(BX) since αT1(BX) and βT2(BX) are subsets of αT1(BX) and βT2(BX) respectively. αT1(BX) + βT2(BX) is

 

CHAPTER THREE

Application to Linear Elliptic Boundary value Problems

Notations and definitions

All funtions and Vector fields used are of class atleast C2

Definition 3.1.1. We define the gradient of the scalar function f ∈ Rn as the vector field of the partial derivatives of f denoted by f i.e

Definition 3.1.2. The divergence of the vector field F = (f1, f2, …, fnin the coordinates (x1, x2, …, xn), is given by

∂f

divF = ∇ · F =

∂f2 +  ∂fn .

Definition  3.1.3.  Let  φ Ck(Ω), k 2, where Ω is open in Rn. We define the Laplacian operator of φ by

Δφ div(∇φ)

Proposition 3.1.4. By taking φ, ψ ∈ Ck(Ω), k ≥ 2, we get,

  1. Δ(φψ) = Δφ + Δψ
  2. div(φψ)= φψ) + ⟨∇φ, ψ

Bibliography

  • Gohberg an S. Seymour; Basic Operator theory, 1980
  • EChidume; Applicable Functional Analysis, International Centre for Theoretical Physics Trieste, Italy, July 2006
  • Fabian, P. Habala, P. Hajek, V. Montesinos and V. Zizler;  Banach space theory for linear and non-linear Analysis. , Springer 2006
  • AMunoz, Y. Sarantopolous, A. Tonge; Complexification of real Banach Spaces, Studia Mathematica 1999.
  • Djitte; Lecture note on Sobolev spaces and linear elliptic partial differ- ential equations, African University of Science and Technology, Abuja,Nigeria. 2011
  • Albert; Lecture note on Functional Analysis, 2011
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!