Mathematics Project Topics

Quadratic Forms With Applications

Quadratic Forms With Applications

Quadratic Forms With Applications

Chapter One

PREAMBLE OF THE STUDY

A quadratic form over a field K (K = R or K = C) in finitely many indeterminate x1, . . . , xn is a homogeneous polynomial of degree 2 in K[x1, . . . , xn], unless it is identically zero. The main property of real quadratic forms in the finite dimensional case is that every real quadratic form is orthogonally sim- ilar (i.e., can be transformed by an orthogonal change of the indeterminates considered as coordinates) to a quadratic form which is the sum of multiples of squares of the indeterminates [16].

In fact a quadratic form in a finite set of indeterminates over K, as a homoge- neous quadratic polynomial in the indeterminates with coefficients in K, can be studied by means of matrices because any such a quadratic form Q can be expressed as Q(X) = XT AX, where X is a column vector with the indetermi- nates as elements and A a symmetric matrix over K. Thus it is the quadratic form associated with the symmetric bilinear form defined from Kn Kn  to K by f (X, Y ) = XT AY ; X, Y Kn , and this gives rise to a duality.

Chapter Two

Bilinear Maps and Forms

 Bilinear maps

Definition 2.1.1 (Bilinear maps)

Let E, F and G be three arbitrary vector spaces over K.

bilinear map Φ from E F into G is a mapping Φ : E F G satisfying the following two conditions :

  • Φ( α1x1+ α2x2, y)  =  α1Φ(x1 , y) + α2Φ(x2 , y) for all x1, x2  E, y F and α1, α2  K.
  • Φ( x, α1y1+α2y2) =  α1Φ(x, y1) + α2Φ(x, y2) for all x  Ey1, y2 

F and α1, α2 K.

This means that Φ is separately linear with respect to each of its two argu- ments (variables).

When E = F , a bilinear map from E2 = E E into G is called a G-valued

bilinear map on E.

Remark 2.1.2

Note that the above two conditions that define the bilinearity of Φ are also respectively equivalent to the following :

Φ( x1+ αx2, y) =  Φ(x1 , y) + αΦ(x2 , y) for all x1, x2 E, y  F and α K.

Φ( x, y1+ αy2)  =  Φ(x, y1) +  αΦ(x, y2) for all x E, y1, y2  F and α K.

There are many interesting bilinear maps in the literature. Let’s us mention few ones.

Examples 2.1.3

  1. Given a  K-vector space V , the scalar multiplication definedfrom K V

into V as

 

Chapter Three

Quadratic forms

Generalities on Quadratic Forms and Spaces

Definition 3.1.1

A quadratic form on a K-vector space V , is a functional Q on V such that there exists a bilinear form f on V satisfying

Q(x) = f (x, x, x V .

First Properties

Proposition 3.1.2 (Polar form of a quadratic form)

For every quadratic form Q on a K-vector space V , there exists a unique symmetric bilinear form ϕ on V such that

Q(x)  = ϕ(x, x, x V .

This unique symmetric bilinear form ϕ corresponding to Q is called the polar form of Q and can be expressed by

ϕ(x, y) =  1  Q(x y) Q(x) Q(y)  , x, y V .

Consequently, there is a one-to-one correspondance between the class of quadratic forms of a vector space V and the class of symmetric bilinear form on V .

Proof.

Q being a quadratic form, there exists a bilinear form f such that

Q(x)  = f (x, x) for all x V .

Thus it is not hard to check that ϕ f (the symmetric part of f , cf. Definition

…)  is the unique symmetric bilinear form such that Q(x)   =   ϕ(x, x) for all

Chapter Four

Applications

 Quadratic forms and Unconstrained Opti- mization

Proposition 4.1.1 [23],[19]

Let H be a real Hilbert, Ω be a nonempty open set of H and f : Ω R be a function. Let x0 Ω.

  • Iff  is differentiable at x0, then the derivative (in the sense of Fr´echet) of f at x0 is a bounded linear functional on H and so there exists a unique vector denoted by f (x0) and called the gradient of f at x0 such that fj(x0)(h)  =  (∇f (x0), h) , h  H .
  • If f is of class C2, then the second order derivative (in the sense of Fr´echet)of f  at x0 is a symmetric bounded bilinear form on H  and so there exists a unique bounded symmetric operator denoted by Hf (x0) and called the Hessian of f at x0 such that

fjj(x0)(u, v)  =  (u, Hf (x0)v) , u, v  H .

Theorem 4.1.2 (Optimality Necessary Condition)[3]

Let Ω be a nonempty open set in Rn, let f be a real-valued function defined on Ω and suppose that x0 Ω is a local minimizer.

If f has first order partial derivatives at x0, then

∂f

(x0)  = 0 , for all i = 1, 2, . . . , n.

∂x

In particular, if f is differentiable at x0, then x0 is a critical point of f ; that is,

Bibliography

  • Lang, S. : Calculus of several variables. 2 nd Springer New-York. 1987.
  • Jost, J. : Postmodern Analysis. Springer Berlin.
  • Berkovitz,D. : Convexity and Optimization in Rn. John Wiley & Sons, Inc. 2001.
  • Pfister, A. : Quadratic Forms with Applications to AlgebraicGeometry and Cambridge University Press. 1995.
  • Gregory, : Quadratic Form Theory and Differential Equations. Math- ematics in Sciences and Engineering 152. Academic Press 1980.
  • Lax, : Functional Analysis. Wiley-Interscience2002.
  • O’Meara, O.T. : Introduction to Quadratic 3rd Ed. Springer Berlin1973.
  • Simon, : Hamiltonians defined as quadratic forms. Comm. Math. Phys. 21. (1971), 192-210.
  • Troutman, L. : Variational Calculus and Optimal Control. Optimiza- tion with elementary convexity. 2nd Ed. Springer1996
  • Simon, B. : A canonical decomposition of quadratic forms with applica- tions to monotone operators. Journal of Functional Analysis 28. (1978) 337-385.
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!