Mathematics Project Topics

Lasalle Invariance Principle for Ordinary Differential Equations and Applications

Lasalle Invariance Principle for Ordinary Differential Equations and Applications

Lasalle Invariance Principle for Ordinary Differential Equations and Applications

Chapter One

PREAMBLE OF THE STUDY

In this chapter, we focussed on the basic concepts of the ordinary differential equations. Also, we emphasized on relevant theroems in ordinary differential equations.

Definition 1.1.1 An equation containing only ordinary derivatives of one or more dependent vari- ables with respect to a single independent variable is called an ordinary differential equation ODE. The order of an ODE is the order of the highest derivative in the equation.  In symbol, we can express an n-th order ODE by the form

 

x(n) = f (t, x, …, x(n1)) (1.1.1)

Definition 1.1.2 (Autonomous ODE ) When f is time-independent, then (1.1.1) is said to be an autonomous ODE. For example,

xj(t) = sin(x(t))

Definition 1.1.3 (Non-autonomous ODE ) When f is time-dependent, then (1.1.1) is said to be a non autonomous ODE. For example,

 xj(t) = (1 + t2)y2(t)

CHAPTER TWO

BASIC THEORY OF ORDINARY DIFFERENTIAL EQUATION

In this chapter we give a broad discussion of the existence and uniqueness of solutions of ordinary differential equations. We discuss equilibrium points, stability, fundamental matrix and variation of constants formula, and other key concepts of dynamical systems. We start this chapter with the following definitions;

Definitions and basic properties

Definition 2.1.1 Let I be an interval containing t0, let f : I × Rn → Rn be continuous and Lips- chitzian with respect to second variable, let x : I → Rn be continuous, then x is a solution of the following ordinary differential equation

on I, if

xis a C1  function on 

xj(t) = f (t, x(t)), t I x(t0) = x0, t0 ∈ I

(2.1.1)

xsatisfies the above ODE, for all t 

Theorem 2.1.2 [9](Peano’s Theorem) Let f : R × Rn → Rn be continuous in a neighbourhood of (t0, x0then there exists a > such that the initial value problem

xj = f (t, x), t ∈ R

x(t0) = x0 ∈ Rn.

has at least one solution on the interval I = [t0 − a, t0 + a] ⊆ R.

Proof . Define the set

(2.1.2)

E C([t0 − a, t0 + a], Rn)

then E is a Banach space provided with the ” sup ” norm. Let

M  = max ǁf (t, x)ǁ  for Q = {(t, x) : −a ≤ t − t0 ≤ a, ǁx − x0ǁ ≤ b}

and define the set A ⊂ E by

A := {x ∈ E : sup ǁx(t) − x0ǁ ≤ b} = B(x0, b)C(I,Rn   ⊆ E.

Then, A is a closed subset of E, as xn ∈ A implies that

lim

n→∞

xn x ∈ A

(this follows from the uniform convergence in E). Also, A is convex (every ball is convex). Thus, by the Ascoli-Arzela theorem, A is compact, and A is complete as a closed subset of a complete metric space with the sup norm.

Also, let T A → E be defined by

(Tx)(t) := x0 +

ˆ t

f (s, x(s))ds

t0

Let, (xn)n1 ⊆ A such that xn → x ∈ A with the ” sup ” norm, then,

xn(t) → x(t) implies sup ǁxn(s) − x(s)ǁ → 0, as n → ∞.

Therefore,

ˆ t

ǁTxn(t) − Tx(t)ǁ ≤ ǁf (s, xn(s)) − f (s, x(s))ǁds

ˆ t0+a

≤ t0a

ǁf (s, xn(s)) − f (s, x(s))ǁd

≤ 2a sup ǁf (s, xn(s)) − f (s, x(s))ǁ.

f is continuous on I × B(x0, b) implies that f  is uniformly continuous on I × B(x0, b). So, as

n → ∞, ǁTxn(t) − Tx(t)ǁ → 0.

Thus, T is continuous. Let Tz ∈ T (A)

ˆ t

ǁTz(t) − x0ǁ = ǁ

ˆ t

f (s, z(s))dsǁ

≤ t0

ˆ t

≤ t0

ǁf (s, z(s))ǁds

Mds

ˆ t0+a

Mds = 2aM ≤ b

t0a

for a small enough. Hence, T (A) ⊆ A.

We look for a fixed point of T , that is, we want to find

x ∈ E   such   that   Tx x.

A fixed point of T solves the IVP(2.1.2), and T has a fixed point as a consequence of the following Schauder – Tychonoff’s Theorem (If T : X X is continuous and if A X is a convex compact subset of the normed linear space X and T (A) ⊂ A, then T  has a fixed point in A).

Example 2.1.3 Consider

Here,  f (y) = √|y(t)|.

yj = |y(t)|, t ≥ 0, y(0) = 0.

Solving the given IVP, we have that,

t2

y(t) = − 4 , if y(t< 0,

y(t) = 0, if y(t) = 0, t2

y(t) =

, if y(t> 0.

4

So, the ODE does not have a unique solution. This is because f is not Lipschitzian.

 

CHAPTER THREE

CONCLUSION

The aim of this thesis is to study a long time behaviour solution using 3 approaches .

The firste is the linearization principle: If it works that fine, but most of cases it does not work well, like we have seen in many examples.

The second one is the Lyapunov functions, it is the best way to study the asymptotic behaviour of solutions, but the construction of the Lyapunov functions depends on the nature of the ODE. The third one is based on LaSalle invariance principle, it is an interesting working tool in dynam- ical systems and control theory.

BIBLIOGRAPHY

  • Chidume, Linear Functional Analysis. Ibadan University Press, 2014.
  • Cristian, C. Vidal, The Chetaev Theorem for Ordinary Difference Equations. Vol. 31 of Proyecciones Journal of Mathematics, 2012, 391-402.
  • Rowell, Computing the Matrix Exponential, The Cayley Hamilton Method. Massachusetts Institute of Technology, Department of Mechanical engineering, 2004, web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf
  • Abdollahi, StabilityAnalysis I, Lecture Note on Nonlinear Control, Amirkabir University of Technology, Fall 2010.
  • Birkoff, S. MacLane, A Survey of Modern Algebra, 1996, [email protected]
  • Javed, The Invariance Principle , Lecture Slides on Nonlinear Control Systems, Damodaram Sanjivayya National Law University.
  • Lestas, Invariant Sets and Stability, Nonlinear and Predictive Control. Engineering Tripos Part IIB, 2009.
  • Ezzinbi, Lecture Note on Metric Spaces and Differential Calculus. AUST, 2018.
  • Ezzinbi,  Lecture Note on ODEs. AUST, 2018.
  • Kawski, Introduction to Lyapunov theory. 2009.
  • Salman,  V.  Borkar, Exponential Matrix and their Properties. Vol. 4 of International Journal of Scientific and Innovative Mathematical Research(IJSIMR), 2016, 53-63, www.arcjournals.org
WeCreativez WhatsApp Support
Our customer support team is here to answer your questions. Ask us anything!